Assignment 2

1. Let f and g be in $R_{2 \pi}$. Their convolution (product) is defined to be

$$
(f * g)(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-y) g(y) d y
$$

Formally show the followings:
(a) $f * g$ belongs to $R_{2 \pi}$.
(b) $g * f=f * g$.
(c) $\widehat{f * g}(n)=\hat{f}(n) \hat{g}(n), \quad \forall n \in \mathbb{Z}$.

It shows convolution is turned into pointwise product (of bisequences) under the Fourier transform.
2. Let $f \in R_{2 \pi}$ and its primitive function be given by

$$
F(x)=\int_{0}^{x} f(x) d x
$$

Show that F is 2π-periodic if and only if f has zero mean. In this case,

$$
\hat{F}(n)=\frac{1}{i n} \hat{f}(n), \quad \forall n \neq 0
$$

3. Provide a proof of Theorem 1.6.
4. A function f defined on some $E \subset \mathbb{R}$ is called uniformly Hölder continuous with exponent $\alpha \in(0,1)$ if there exists some constant C such that $|f(x)-f(y)| \leq C|x-y|^{\alpha}, \forall x, y \in E$. It is called Lipschitz continuous when $\alpha=1$. Show that for a uniformly Hölder or Lipschitiz continuous, 2π-periodic function, its Fourier coefficients satisfy

$$
\left|a_{n}\right| \leq \frac{C \pi^{\alpha}}{n^{\alpha}}, \quad\left|b_{n}\right| \leq \frac{C \pi^{\alpha}}{n^{\alpha}}
$$

5. Provide a proof of Theorem 1.5 when the Lipschitz condition is replaced by a Hólder condition.
6. Propose a definition for $\sqrt{d / d x}$. This operator should be a linear map which maps smooth functions to smooth functions and satisfy

$$
\sqrt{\frac{d}{d x}} \sqrt{\frac{d}{d x}} f=f
$$

for all smooth, 2π-periodic f.
7. Establish the following two formulas:
(a)

$$
\frac{\pi^{2}}{12}=\sum_{k=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}
$$

(b)

$$
\frac{\pi}{4}=\sum_{k=0}^{\infty} \frac{(-1)^{n}}{2 n+1}
$$

Hint: Examine the Fourier series of the functions $f_{j}, j=1, . .4$, in Section 1 .
8. Show that

$$
\frac{x^{2}}{4}-\frac{\pi x}{2}+\frac{\pi^{2}}{6}=\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}, \quad \forall x \in[0,2 \pi]
$$

and deduce

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

9. (a) Show that the Fourier series of the function $\cos t x, x \in[-\pi, \pi]$ where t is not an integer is given by

$$
\frac{\pi \cos t x}{\sin t \pi}=\frac{1}{t}+\sum_{n=1}^{\infty} \frac{2 t}{t^{2}-n^{2}}(-1)^{n} \cos n x, \quad x \in[-\pi \cdot \pi]
$$

(b) Deduce that for $t \in(0,1)$,

$$
\log \sin t \pi=\log t \pi+\sum_{n=1}^{\infty} \log \left(1-\frac{t^{2}}{n^{2}}\right)
$$

(c) Conclude that

$$
\frac{\sin t \pi}{\pi}=t \prod_{n=1}^{\infty}\left(1-\frac{t^{2}}{n^{2}}\right), \quad t \in(0,1)
$$

10. Here is an interesting application of Property III.
(a) Show that $\frac{1}{\sin x / 2}-\frac{2}{x}$ is bounded on $(0, \pi)$.
(b) Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi}\left(\frac{1}{\sin x / 2}-\frac{2}{x}\right) \sin \left(n+\frac{1}{2}\right) x d x=0
$$

(c) Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi} \frac{\sin (n+1 / 2) x}{x} d x=\frac{\pi}{2}
$$

(d) Finally, deduce that

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

The following problems are optional.
11. A sequence $\left\{x_{n}\right\}$ is convergent to x in arithmetic mean if $y_{n}=\left(x_{0}+\cdots+x_{n-1}\right) / n$ converges to x as $n \rightarrow \infty$. Show that $\left\{x_{n}\right\}$ converges to x in arithmetic mean when $\left\{x_{n}\right\}$ converges to x. However, give an example to show that the converse may be not true.
12. Let

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

and

$$
\sigma_{n}(x)=\frac{D_{0}(x)+\cdots+D_{n-1}(x)}{n}
$$

Establish the formula

$$
\sigma_{n}(x)=\frac{1}{\pi n} \int_{-\pi}^{\pi} \frac{\sin ^{2}(n z / 2)}{2 \sin ^{2} z / 2} f(x+z) d z, \quad n \geq 1
$$

13. Let s_{n} be the n-th partial sum of the series $\sum_{k=1}^{\infty} a_{k}$. The series is called convergent in arithmetic mean to s if $\left\{s_{n}\right\}$ converges to s in arithmetic mean. Show that for every 2π-periodic function integrable on $[-\pi, \pi]$, its Fourier series converges in arithmetic mean to $f(x)$ where x is a point of continuity and to $\left(f\left(x^{+}\right)+f\left(x^{-}\right)\right) / 2$ where x is a jump discontinuity.
